Socio Economic Study of Farmer Charcoal Production in the Brazilian Amazon and implications for the slash-and-char praxis & carbon sequestration

Sundari Narayan Swami, Wenceslau Geraldes Teixeira, Johannes Lehmann, Christoph Steiner

1,2 Embrapa Amazonia Ocidental, 69011-970 Manaus, Brazil; 3 Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853, USA; Institute of Soil Science, University of Bayreuth, 95440 Bayreuth, Germany

* corresponding author: sundarisiwami@yahoo.com

Introduction

An anthropogenic soil probably caused by Amazonian populations is the Columbia times, known as Terra Preta de Indio called Amazonian Dark Farts (AD), that can be found only distributed the Brazilian Amazon is rich in Soil Organic Matter (SOM). Frequent findings of charcoal and high economic trade value, indicating that residues of incomplete combustion of organic material (charcoal/wood carbon) are a key factor in the presence of SOM in this type of soil. In the soils of Brazilian Amazon, SOM plays a role in maintaining soil fertility. Scientists in Manaus in the Brazilian state of Amazonas, are studying the effects of charcoal production to highly industrialized soils in Manaus in attempts to create a "Terra Preta Nova," an area examining the possibility of defining a new agricultural praxis - "slash and char" - as opposed to slash and burn, in the latter results in loss of a SOM, whereas the former method shows potential for increasing SOM and soil fertility.

Charcoal additions to highly enriched Amazonian soils to give a very high amount of manure, increased biomass production and economic reproduction significantly in NPK plus lime-fertilized plots and showed evidence of charcoal's nutrient retention and absorption capacity and its positive effect on crop productivity. Also, charcoal formation during biomass burning is considered one of the few ways that carbon is transferred to refractory long-term pools. The production of charcoal is CO2-neutral if the growing wood from plantations or secondary forest is used. Thus, "slash-and-char" as an alternative to slash and burn could be a further argument towards sustainability in agriculture in the Amazon while creating a sink for atmospheric CO2 in the form of charcoal in soil. Small farmers and charcoal producers in the vicinity of Manaus, Brazil already engage in charcoal production using wood from the Amazon in rainforest and within the slash-and-char method, farmers would cut wood and use it to make charcoal which they would then sell to the soil as a conditioner thus limestone for planting, instead of cutting wood and burning it in a way to clear the land and release nutrients. Another suggestion under the praxis is to use only unsustainable charcoal as a soil conditioner, while selling the rest of the charcoal. Possibilities might exist for income for the farmers from carbon sequestration.

Objectives

This objective was to conduct a socio-economic analysis of charcoal production near Manaus, Amazonas, Brazil in order to determine basic economic and social information necessary to evaluate the suitability of the charcoal method under the present socio-economic conditions, to determine the economic importance of charcoal to those who make it as well as to determine the economic sustainability of charcoal production as a household activity. Information that might help to gauge the potential of the charcoal method for carbon sequestration credits was also obtained. Specific attention was given to:

- charcoal production process
- charcoal production parameters
- charcoal production quality
- charcoal production yields
- charcoal production requirements
- household economic activity
- charcoal output
- charcoal production costs and revenues

How will the current social, economic factors as well as the physical parameters of the wood and charcoal as measured by this study influence the implementation of the proposed slash-and-char method?

Location and Method

Primary research was carried out in the Taruma Mitin Settlement situated at Kiun 21 on the BR 174 highway that links Manaus, Brazil to Caracas, Venezuela. The settlement was originally created to accommodate potential farmers without land who live in marginalized conditions in Manaus, thus making possible the conditions for them to engage in agriculture. 15 charcoal making households were interviewed.

A semi-structured questionnaire was first used with the charcoal makers over the space of one month, and then continued with in-depth interviews, home and community observations. Interviews were conducted in Spanish and Portuguese and qualitative and quantitative information, were semi-structured in formal and informal interviews.

- for each species of wood that was loaded into each of the four kilns (Ibera referred to as kiln A, B, C, and D), disk-shaped cross sections of wood were cut from different parts and from different parts of the trunk, mortaring three disks per species for kiln A, five disks per species for kiln B, eight disks per species for kiln C and ten disks per species for kiln D.
- of each of the cross sections were cut, dried, weighted and ground into a fine powder, from which three composite samples were prepared for each species used in each of the four kilns.
- composite samples analyzed for carbon content in an Elemental Analyzer at the EMBRAPA Soil Physics Laboratory.

Discussion and Conclusion

Economic and social data revealed that there exist differences between charcoal producers at the household level that results in two distinct groups of producers in the settlement.

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sources of income</td>
<td>One</td>
</tr>
<tr>
<td>Net income per month from charcoal sales</td>
<td>R$ 383</td>
</tr>
<tr>
<td>Does the group make charcoal every month?</td>
<td>Yes</td>
</tr>
<tr>
<td>Do group members sell to middle-men?</td>
<td>Yes</td>
</tr>
<tr>
<td>Average number of kilns</td>
<td>1-2</td>
</tr>
</tbody>
</table>

There are two distinct groups of charcoal producers in Taruna Mitin and these household level differences are significant to account for large differences in income and access to labor and capital. Group 1 is especially reliant on income from charcoal sales, which goes towards sustaining the household at a very basic level. Their monthly income is highly variable, being influenced by conditions such as the ability to hire labor, the successful carbonization of the mixture of the wood (which in many cases depend on the condition of the kiln), the condition of the fuel for the kilns as well as the fuels. Group 2 consists of those who are not dependent on charcoal as their principal source of income. All members of this group have more than one source of income. They produce charcoal as a supplement to their income.

Charcoal making is highly labor intensive activity. The more labor involved in production, the more charcoal they produce. Small farmers who make charcoal as their only livelihood generally cannot afford to hire more than one other person to help them make charcoal and they cannot afford this often. This limits their production capacity.

The slash-and-char method requires that charcoal used as soil conditioner must be produced from the same land that it is going to be applied. Studies suggest that charcoal applications in the range of 1-1.5 Mgha could be sufficient to increase crop production. Although we did not assess the area from which the biomass was cut, in many cases the quantity of charcoal produced in a brick kiln by a small farmer would not be high enough. Quantity required for optimal crop production if charcoal powder is used, as suggested by the studies included the amount of charcoal powder produced by charcoal large scale plantation projects need to be significantly higher, especially for Group 1. It might look different if all woody biomass is used for carbonization, and not just the selected tree trunk that the producers use in order to minimize the probability that the process will produce charcoal powder and minimize intact charcoal output for sale. Charcoal residues might most likely be applied in planting holes giving high enough concentrations for optimal plant growth. Many small farmers will also be limited by labor requirements.

Studies on the amount of land required to make a given amount of charcoal (say 109 ha or one ton) would be very useful in determining the amount of labor required to sustain production at those levels as well as the extent of deforestation that would have to take place in order to produce sufficient charcoal for application.

From the carbon analysis in charcoal and powder, ranking charcoal with the express purpose of using it as soil conditioner could be one way to increase the amount of C in the soil, benefitting the farmer by providing him with a land clearing method that increases SOM in the form of SKC, while creating a refinery soil carbon pool.

- An interesting and perhaps necessary investigation to determine whether the slash-and-char practice is financially viable to the extent that it can compensate for startup costs, transaction costs as well as monitoring and evaluation of carbon stocks and the number of years to positive cash from revenue from carbon sequestration.

- Milli-off households, such as those in Group 2, that engage in charcoal production can perhaps pay for the required organic inputs through the income from charcoal sales, but poorer households such as those in Group 1 might have difficulty paying for organic inputs with the income from charcoal sales, since this income is also used to meet the demands of their labor in the charcoal production process. The slash-and-char methods successful implementation will require external stimuli in the form of additional organic inputs, improved access to markets and better access to credit, among other things.

*Scholarships/Program: USAID, Global Health, Foreign Service for Brazil and laboratory assistance, CNPq (National Council for Scientific and Technological Development) who funded this study. Christoff Stuer for photography.

*Embrapa Amazônia Ocidental, 69011-970 Manaus, Brazil; 1 Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853, USA; Institute of Soil Science, University of Bayreuth, 95440 Bayreuth, Germany

With the exception of soil tests and research, in-depth interviews; Embrapa, Brazil for facilities. Cornell University for financial assistance for this study.